University of North Georgia Department of Mathematics

Instructor: Berhanu Kidane

Course: Precalculus Math 1113
Text Books: For this course we use free online resources:
See the folder Educational Resources in Shared class files

1) http://www.stitz-zeager.com/szca07042013.pdf (Book1)
2) Trigonometry by Michael Corral (Book 2)

Other online resources:

Tutorials:

0 http://www.wtamu.edu/academic/anns/mps/math/mathlab/col_algebra/index.htm
0 http://archives.math.utk.edu/visual.calculus /
o http://www.ltcconline.net/greenl/java/index.html
o http://en.wikibooks.org/wiki/Trigonometry
0 http://www.sosmath.com/trig/trig.html

Animation Lessons:

o http://flashytrig.com/intro/teacherintro.htm
Test worksheet generator for Mathematics Teachers
o https://www.kutasoftware.com/

For more free supportive educational resources consult the syllabus

Chapter 6
 Exponential and logarithmic Functions (Page 417)

Objectives: By the end of this chapter students should be able to:

- Identify Exponential and logarithmic Functions
- Identify graphs of exponential and logarithmic functions
- Sketches graphs of Exponential and Logarithmic functions
- Identify the relationship between exponential and logarithmic functions
- Identify and state rules of exponential and logarithmic functions
- Find domain and range of exponential and logarithmic functions
- Simplify exponential and logarithmic functions using their rules

Motivation

1) Interest: Compound

Compounded Continuously

Formulas:

$$
\begin{aligned}
& \boldsymbol{A}=\boldsymbol{P}\left(\mathbf{1}+\frac{r}{n}\right)^{n t} \quad \text { (Compound Interest) } \\
& \boldsymbol{A}=\boldsymbol{P} \boldsymbol{e}^{r \boldsymbol{t}} \quad \text { (Continuous Compounding) } \\
& \boldsymbol{A}=\text { Amount } \\
& \boldsymbol{P}=\text { Principal } \\
& \boldsymbol{r}=\text { Rate of interest (in \%) } \\
& \boldsymbol{t}=\text { Time (usually in years) } \\
& \boldsymbol{n}=\text { Number of times amount is compounded }
\end{aligned}
$$

2) Radioactive Decay \& Population Growth

Radioactive Decay: If $\boldsymbol{m}_{\mathbf{0}}$ is the initial mass of a radio active substance with half life \mathbf{h}, then the mass $\boldsymbol{m}(\boldsymbol{t})$ remaining at time \boldsymbol{t} is modeled by the function

$$
\boldsymbol{m}(\boldsymbol{t})=\boldsymbol{m}_{0} \boldsymbol{e}^{-r \boldsymbol{t}}, \text { where } \boldsymbol{r}=\frac{\ln 2}{h}
$$

Population Growth: A population that experiences a population growth increases according to the model: $\boldsymbol{n}(\boldsymbol{t})=\boldsymbol{n}_{0} \boldsymbol{e}^{r \boldsymbol{t}}$, where $\boldsymbol{n}(\boldsymbol{t})=$ Population at time $\mathbf{t}, \boldsymbol{n}_{0}=$ Initial size of population, $\mathrm{r}=$ relative rate of growth (expressed as a proportion of the population), $t=$ time.

Example: C-14 Dating. The burial cloth of an Egyptian mummy is examined to contain 59\% of the C14 it contained originally. How long ago was the mummy buried? (The half-life of C-14 is 5730 years)

Example: YouTube video

- Exponential growth and decay word problem: https://www.youtube.com/watch?v=m5Tf6vgoJtQ
- Exponential decay: https://www.youtube.com/watch?v=HTDop6eEsaA
- Half-life example: https://www.youtube.com/watch?v=Hqzakjo dYg

Compound Interest

Compound Interest is calculated by the formula:

$$
A(t)=P\left(1+\frac{r}{n}\right)^{n t}
$$

Example: YouTube video

- Compound interest: https://www.youtube.com/watch?v=Rm6UdfRs3gw

Example 4: If $\$ 4000$ is borrowed at a rate of 5.75% interest per year, compounded quarterly, find the amount due at the end of the given number of years. a) 4 years $\begin{array}{lll}\text { b) } 6 \text { years } & \text { c) } 8 \text { years }\end{array}$

For $r=1$, the compound interest formula becomes $A(t)=P\left(1+\frac{1}{n}\right)^{n t}$.

The Number \mathbf{e}

Consider the expression $\left(1+\frac{1}{n}\right)^{n}$. We would like to investigate the value that this expression gets close to if \boldsymbol{n} keeps getting larger. That is as $\boldsymbol{n} \rightarrow \infty,\left(1+\frac{1}{n}\right)^{\boldsymbol{n}} \rightarrow$?

\boldsymbol{n}	$\left(\mathbf{1}+\frac{\mathbf{1}}{\mathbf{n}}\right)^{\boldsymbol{n}}$
1	2
10	2.593742
100	2.7048138
10000	2.71814592
100000	2.718268273
1000000	2.7182804693
10000000	2.718281692544
10^{8}	2.7182818148676
10^{9}	2.71828182709990
...	
∞	$2.71828182845904 \ldots$

From the above table we can make the following observation:
As \boldsymbol{n} increases without bound $\left(\mathbf{1}+\frac{\mathbf{1}}{\boldsymbol{n}}\right)^{\boldsymbol{n}}$ approaches the number \boldsymbol{e}, or equivalently
When $n \rightarrow \infty$ the value $\left(1+\frac{1}{n}\right)^{n} \rightarrow e$

6.1 Exponential Functions

Exponential Functions of base a

Definition: An exponential function with base \boldsymbol{a} is the function defined by $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a}^{\boldsymbol{x}}$, where $a>0$ and $a \neq 1$.

Example 1: a) $f(x)=2^{x}$
b) $g(x)=\left(\frac{1}{2}\right)^{x}=2^{-x}$
c) $f(x)=e^{x}$

Graphs of $f(x)=a^{x}$: there are two cases i) $a>1$ and ii) $0<a<1$

Properties of the exponential function $f(x)=a^{x}$:

1) The domain of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a}^{\boldsymbol{x}}$ is the set of all real numbers $=(-\infty, \infty)$
2) The function $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a}^{\boldsymbol{x}}$ is increasing for $\boldsymbol{a}>\mathbf{1}$ and decreasing for $\mathbf{0}<\boldsymbol{a}<\mathbf{1}$
3) The range of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a}^{\boldsymbol{x}}$ is $\{\boldsymbol{y} \mid \boldsymbol{y}>\mathbf{0}\}=(\mathbf{0}, \infty)$
4) The function $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a}^{\boldsymbol{x}}$ has y intercept $(\mathbf{0}, \mathbf{1})$ but has nox - intercept
5) The function $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a}^{\boldsymbol{x}}$ is a one-to-one function, hence it has inverse which is a function.

Examples: YouTube videos

- Exponential growth and ...: https://www.youtube.com/watch?v=6WMZ7JOwwMI
- Exponential decay and ...: https://www.youtube.com/watch?v=AXAMVxaxjDg

Example 2: Sketch the graph of the following exponential functions:
a. $f(x)=2^{x}$
a. $f(x)=0.8^{x}$
b. $f(x)=\sqrt[3]{3}^{x}$
d) $f(x)=\left(\frac{1}{2}\right)^{x}$
e) $f(x)=3^{x}$
f) $f(x)=0.6^{x}$

Transformations:

Translations, Reflections, and Vertical and Horizontal Stretches and Shrinks

Translations:

1) Vertical Translation: $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x}) \pm \boldsymbol{c}$, for $\boldsymbol{c}>\mathbf{0}$

The graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})+\boldsymbol{c}$ is the graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ shifted vertically c units up
The graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})+\boldsymbol{c}$ is the graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ shifted vertically c units down
2) Horizontal Translations: $y=f(x \pm c)$, for $c>0$

The graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x}-\boldsymbol{c})$ is the graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ shifted horizontally c units to the right The graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x}-\boldsymbol{c})$ is the graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ shifted horizontally c units to the left.

Reflections

1) Across the x-axis:

The graph of $\boldsymbol{y}=-\boldsymbol{f}(\boldsymbol{x})$ is the reflection of the graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ across the \mathbf{x}-axis.
2) Across the y-axis:

The graph of $\boldsymbol{y}=\boldsymbol{f}(-\boldsymbol{x})$ is the reflection of the graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ across the \mathbf{y}-axis.

Stretches and Shrinks

Vertical Stretching and shrinking

To graph $y=c f(x)$:
If $\boldsymbol{c}>\mathbf{1}$, stretch the graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ vertically by a factor of \mathbf{c}
If $\mathbf{0}<\boldsymbol{c}<\mathbf{1}$, shrink the graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ vertically by a factor of \mathbf{c}

Horizontal Stretching and shrinking

To graph $y=f(c x)$:
If $\boldsymbol{c}>1$, shrink the graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ horizontally by a factor of $\mathbf{1} / \boldsymbol{c}$
If $\mathbf{0}<\boldsymbol{c}<\mathbf{1}$, stretch the graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ horizontally by a factor of $\mathbf{1} / \boldsymbol{c}$
Example 3: Sketch the graph (Transformations of Exponential Functions)
a. $f(x)=-2^{x}$
b. $f(x)=2^{x}+2$
c. $f(x)=2^{x-1}$
d. $f(x)=-2^{x+1}-2$

OER West Texas A\&M University Tutorial 42: Exponential Functions

The Natural Exponential Function

Definition: The Natural Exponential Function is defined by $f(x)=e^{x}$, with base e.

Continuously Compounded Interest

Continuously Compounded Interest is calculated by the formula: $\boldsymbol{A}(\boldsymbol{t})=\boldsymbol{P} \boldsymbol{e}^{\boldsymbol{r t}}$
Where $\boldsymbol{A}(\boldsymbol{t})=$ Amount after t years, $\mathbf{P}=$ Principal, $\mathbf{r}=$ Interest rate per year, and $\mathbf{t}=$ Number of years
Example 1: A sum of $\$ 5000$ is invested at an interest rate of 9% per year compounded continuously
a) Find the value of $\mathbf{A}(\mathbf{t})$ of the investment after t years
b) Draw a graph of $\mathbf{A (t)}$

Laws of Exponents

Laws

$x^{1}=x$
$x^{0}=1$
$x^{-1}=1 / x$
$x^{m} x^{n}=x^{m+n}$

$$
x^{m} / x^{n}=x^{m-n}
$$

$$
\left(x^{m}\right)^{n}=x^{m n}
$$

$$
(x y)^{n}=x^{n} y^{n}
$$

$$
(x / y)^{n}=x^{n} / y^{n}
$$

$$
x^{-n}=1 / x^{n}
$$

And the Laws about Fractional Exponents:

Laws

$$
x^{1 / n}=\sqrt[n]{x}
$$

$$
x^{\frac{m}{n}}=\sqrt[n]{x^{m}}=(\sqrt[n]{x})^{m}
$$

Examples

$$
\begin{aligned}
& x^{1 / 3}=\sqrt[3]{x} \\
& x^{\frac{2}{3}}=\sqrt[3]{x^{2}}=(\sqrt[3]{x})^{2}
\end{aligned}
$$

Proof of the law: $x^{\frac{m}{n}}=\sqrt[n]{x^{m}}=(\sqrt[n]{x})^{m}$ follows from the fact that $\frac{m}{n}=m \times(1 / n)=$ $(1 / n) \times m$
OER West Texas A\&M University Tutorial 2: Integer Exponents Tutorial 5: Rational Exponents Example: YouTube video:

- Rational exponent: https://www.youtube.com/watch?v=aYE26a5E1iU

6.2 Logarithmic Functions and Their Graphs (page 423)

Consider the exponential function $y=a^{x}, a>0$ and $a \neq 1$

- $y=a^{x}$ is a one-to-one function, thus it has an inverse which is a function
- The inverse of $y=a^{x}$ is a function called the logarithmic function

Recall, the inverse of a function is obtained by interchanging the \boldsymbol{x} and the \mathbf{y} in the equation defining the function. Thus, the inverse of $\boldsymbol{y}=\boldsymbol{a}^{\boldsymbol{x}}$ is given by $\boldsymbol{x}=\boldsymbol{a}^{\boldsymbol{y}}$ which is the same as $\boldsymbol{y}=$ $\boldsymbol{\operatorname { l o g }}_{\boldsymbol{a}} \boldsymbol{x}$. That is we are saying $\boldsymbol{x}=\boldsymbol{a}^{y} \Leftrightarrow \boldsymbol{y}=\boldsymbol{\operatorname { l o g }}_{\boldsymbol{a}} \boldsymbol{x}$

Graphically: The graph of $\boldsymbol{y}=\boldsymbol{\operatorname { l o g }}_{\boldsymbol{a}} \boldsymbol{x}$ obtained by reflecting the graph of $\boldsymbol{y}=\boldsymbol{a}^{\boldsymbol{x}}$ across the line $y=x$. For example, consider $y=2^{x}$

Example: YouTube video

- Intro to logarithm: https://www.youtube.com/watch?v=mQTWzLpCcW0

Logarithmic Function with Base a

Definition: (log function to any base \boldsymbol{a})

$$
\boldsymbol{y}=\log _{\boldsymbol{a}} \boldsymbol{x} \text { is the number } \boldsymbol{y} \text { such that } \boldsymbol{x}=\boldsymbol{a}^{y} \text {, where } \boldsymbol{x}>\mathbf{0}, \boldsymbol{a}>\mathbf{0} \text { and } \boldsymbol{a} \neq \mathbf{1}
$$

Examples

a) Case, $a>1: y=\log _{2} x, y=\log _{3} x, y=\log _{1.3} x ; y=\log x ; y=\ln x$
b) Case, $0<a<1: y=\log _{1 / 2} x, \quad y=\log _{1 / 3} x, y=\log _{0.4} x ; y=\log _{1 / 7} x$

Graphs

Graphs of $y=\log _{a} x$: Two cases i) $a>1$ and ii) $0<a<1$

Properties of the logarithm function $f(x)=\log _{a} x$

1) The domain of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{\operatorname { l o g }}_{\boldsymbol{a}} \boldsymbol{x}$ is $\{\boldsymbol{x} \mid \boldsymbol{x}>\boldsymbol{0}\}=(0, \infty)$
2) The function $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{\operatorname { l o g }}_{\boldsymbol{a}} \boldsymbol{x}$ is increasing for $\boldsymbol{a}>\mathbf{1}$ and decreasing for $\mathbf{0}<\boldsymbol{a}<\mathbf{1}$
3) The range of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{\operatorname { l o g }}_{\boldsymbol{a}} \boldsymbol{x}$ is the set of all real numbers, in interval form ($-\infty, \infty$)
4) The function $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{\operatorname { l o g }}_{\boldsymbol{a}} \boldsymbol{x}$ has \boldsymbol{x} intercept $(\mathbf{1}, \mathbf{0})$ has no \boldsymbol{y} - intercept
5) The function $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{\operatorname { l o g }}_{\boldsymbol{a}} \boldsymbol{x}$ is a one - to - one function, hence it is invertible.
6) The function $\boldsymbol{f}(\boldsymbol{x})=\log _{\boldsymbol{a}} \boldsymbol{x}$ is the inverse of the exponential function $\boldsymbol{y}=\boldsymbol{a}^{\boldsymbol{x}}$ and vice versa

Example 1: Graph the following logarithmic functions
а) $y=\log _{3} x, y=\log _{1.3} x ; y=\log x ; y=\ln x$
b) $y=\log _{1 / 3} x, y=\log _{0.4} x ; y=\log _{1 / 7} x$

OER West Texas A\&M University Tutorial 43: Logarithmic Functions

Example 2: Find the domain and graph the following logarithmic functions
a) $y=-\log _{3} x$
b) $y=\log _{2}(x-2)$
c) $y=-\log _{0.2}(x+1)+2$

Example 2: Example 6.1.4. Page 425: Find the domain of the following functions
a) $f(x)=2 \log (3-x)-1$
b) $g(x)=\ln \left(\frac{1}{x-1}\right)$

Homework page 429: \#1-74 (odd numbers)

Natural and Common Logarithms

Definition: 1) Logarithms with base \boldsymbol{e} are called natural logarithms,
Notation: $\ln x$ used instead of $\log _{e} \boldsymbol{x}$
2) Logarithms with base 10 are called common logarithms

Notation: $\log x$ used instead of $\log _{10} x$
The calculator $\boldsymbol{l o g}$ is base $\mathbf{1 0}$, and the calculator $\boldsymbol{l n}$ is base \boldsymbol{e}.
Example 3: Find using a calculator:
a) $\log 13$
b) $\log 10$
c) $\ln 9$
d) $\log 5$
e) $\ln e$
f) $\ln 5$

Conversion between Exponential and Logarithmic Equations
Exponent Form

$$
\begin{array}{lll}
b^{y}=x & \Leftrightarrow & y=\log _{b} x \\
\boldsymbol{e}^{y}=x & \Leftrightarrow & y=\ln x \\
10^{y}=x & \Leftrightarrow & y=\log x
\end{array}
$$

Example 4: Example 6.1.3 Page 424: Reading
Examples 5: Convert to the exponential form
a) $\log 1000=3$
b) $\log _{3} 81=4$
c) $\log 5=b$
d) $\ln \sqrt[3]{e}=1 / 3$
e) $\ln e=1$
f) $\ln 9=t$

Example 6: Convert each of the following to a logarithmic or exponential equation:
a) $16=2^{x}$
b) $\log _{2} 32=5$
c) $\log _{3} 9=2$
d) $7^{2}=49$
e) $10^{-3}=0.001$
f) $x=\log _{t} M$
g) $\ln 4=y$
h) $27^{1 / 3}=3$

Properties of Logarithms (page 437)

OER West Texas A\&M University Tutorial 44: Logarithmic Properties

Example: YouTube video

- Logarithm Properties 1: https://www.youtube.com/watch?v=PupNgv49 WY
- Logarithm Properties 2: https://www.youtube.com/watch?v=TMmxKZaCqe0
- Logarithm of power: https://www.youtube.com/watch?v=Pb9V374iOas

1) $\boldsymbol{\operatorname { l o g }}_{b}(x y)=\log _{b} x+\log _{b} y$ (Product Rule)
2) $\log _{b}(x / y)=\log _{b} x-\log _{b} y$
(Quotient Rule)
3) $\boldsymbol{\operatorname { l o g }}_{b} \boldsymbol{x}^{\boldsymbol{P}}=\boldsymbol{P} \times \boldsymbol{\operatorname { l o g }}_{b} \boldsymbol{x}=\boldsymbol{\operatorname { l o g }} \boldsymbol{g}_{b} \boldsymbol{x}$
(Power Rule)
4) $\log _{b} x=\frac{\log _{c} x}{\log _{c} b}$, for $c>0$ and $c \neq 1 \quad$ (Change of Base)

If we change the base b to $c=10$ or $c=e$, then the change of base formula becomes:

$$
\log _{b} x=\frac{\log x}{\log b} \text { OR } \log _{b} x=\frac{\ln x}{\ln b}
$$

Example: YouTube video

- Change base formula: https://www.youtube.com/watch?v=OkFdDqW9xxM
- Sum of logarithm: https://www.youtube.com/watch?v=pkGrXzakRFs

5) Other properties: Let $b>0$ and $b \neq 1$, then:
a) $\boldsymbol{\operatorname { l o g }}_{b} \mathbf{1}=\mathbf{0}$, and so $\ln \mathbf{1}=\mathbf{0}$
b) $\boldsymbol{l o g}_{b} b=1$, and so $\ln e=1$
c) $\boldsymbol{\operatorname { l o g }}_{b} \boldsymbol{b}^{\boldsymbol{x}}=\boldsymbol{x}$, and so $\ln \boldsymbol{e}^{\boldsymbol{x}}=\boldsymbol{x}$
d) $b^{\log _{b} x}=x$, and so $e^{\ln x}=x$

Example 1: Example 6.2.1 page 438: Reading
Example 1: Find each of the following using properties of log.
a) $\quad \log 10000$
b) $\log _{2}\left(\frac{1}{8}\right)$
c) $\log _{5} 5^{3}$
d) $\log _{7} 49$
e) $\log 100$
f) $\log _{3} 3$

Example 2: Find the value each of the following using log properties
a) $\log _{10} 5$
b) $\log _{1 / 3} 81$
c) $\log \sqrt[3]{42}$

Example 3: Simplify the following
a) $\left(2^{\sqrt{5}}\right)^{\sqrt{20}}$
b) $\log _{2}\left(\log _{9} 81\right)$
c) $\log _{2}(128 / 16)$
d) $e^{\ln \sqrt[3]{81}}$

Example 4: Evaluate without a calculator whenever possible, otherwise use a calculator
a) $\log \sqrt[3]{\mathbf{1 0 0}}$
b) $\log _{3} \sqrt[4]{27}$
c) $\log _{2} 25$
d) $\ln \left(\sqrt[7]{e^{2}}\right)$

Example 5: Evaluate:
a) $\log _{2} 5$
b) $\log _{0.32} 99$

Example 6: Write as a single log:
a) $\log _{2}(x-2)+3 \log _{2} x-\log _{2}(3+x)$
b) $\log _{b} x+2 \log _{b} y-3 \log _{b} x$
c) $2 \log _{4} x+\log _{4} y-\frac{1}{3} z$

Example 7: Expand using log properties:
a) $\log (3 \sqrt{x})$
b) $\log _{5}\left(\frac{\sqrt{x+1}}{9 x^{2}(x-3)}\right)$
c) $\log \left(\frac{x^{1 / 2}}{y^{2} \sqrt[3]{z}}\right)$
d) $\log _{b}\left(x^{2} y^{3} z^{2}\right)$
e) $\log _{a}\left(\sqrt[3]{\frac{a^{2} b}{c^{4}}}\right)$

Homework page 445: \#1-42 (odd numbers)

Solving Exponential Equations and Logarithmic Equations:

OER West Texas A\&M University: Tutorial 45: Exponential Equations; Tutorial 46: Logarithmic Equations
Example: YouTube video:

- Solving logarithm equations: https://www.youtube.com/watch?v=Kv2iHde7Xgw
- Solving exponential and log equations: https://www.youtube.com/watch?v=7Ig6kVZaWoU

Form

1. $b^{x}=b^{y}$
2. $\boldsymbol{b}^{\boldsymbol{x}}=\boldsymbol{y}$
3. $\log _{b} x=\log _{b} y$
4. $\log _{b} x=y$

Strategy

Bases are the same, drop bases to obtain $\boldsymbol{x}=\boldsymbol{y}$
Take \log or $\boldsymbol{l n}$ of both sides to change to the $\boldsymbol{\operatorname { l o g }}$ form
Bases are the same, drop the logs to obtain $\boldsymbol{x}=\boldsymbol{y}$
Convert to exponential form to solve $\boldsymbol{b}^{\boldsymbol{y}}=\boldsymbol{x}$

Example1: Solve each of the following
a) $4^{3 x}=32^{x-2}$
b) $e^{x+3}=e^{x^{2}-4 x}$
c) $2^{5 x}=64$
d) $9^{x^{2}} \times 3^{5 x}=27$
e) $3^{x^{2}-5 x}=\frac{1}{81}$
f) $3^{x}=7$
g) $4^{x+3}=3^{-x}$
h) $7 e^{x+3}=5$
i) $3^{x}-3^{-x}=4$
j) $2 e^{4 x}+5 e^{2 x}+3=0$

Example 2: State the domain and solve the following
a) $\log _{2} x=6$
b) $\log _{3} x+\log _{3}(2 x-3)=3$
c) $\log _{3} x+\log _{3}(x+1)=\log _{3} 2$
d) $\log _{2}(x+1)+\log _{2}(3 x-5)=\log _{2}(5 x-3)+2$
e) $\log _{4} x+\log _{4}(x+1)=\log _{4} 2$
f) $\log (x+2)-3 \log 2=1$
g) $\log _{b} 81=-2$

Homework page 456: \#1 - 33 (odd numbers)
Homework page 466: \#1 - 24 (odd numbers)

