University of North Georgia Department of Mathematics

Instructor: Berhanu Kidane

Course: Precalculus Math 1113

Text Books: For this course we use free online resources:

See the folder Educational Resources in Shared class files

- 1) <u>http://www.stitz-zeager.com/szca07042013.pdf (Book1)</u>
- 2) Trigonometry by Michael Corral (Book 2)

Other online resources:

Tutorials:

- o <u>http://www.wtamu.edu/academic/anns/mps/math/mathlab/col_algebra/index.htm</u>
- o <u>http://archives.math.utk.edu/visual.calculus</u> /
- o <u>http://www.ltcconline.net/greenl/java/index.html</u>
- o <u>http://en.wikibooks.org/wiki/Trigonometry</u>
- o <u>http://www.sosmath.com/trig/trig.html</u>

Animation Lessons:

o <u>http://flashytrig.com/intro/teacherintro.htm</u>

Test worksheet generator for Mathematics Teachers

o https://www.kutasoftware.com/

For more free supportive educational resources consult the syllabus

Chapter 6 Exponential and logarithmic Functions (Page 417)

Objectives: By the end of this chapter students should be able to:

- Identify Exponential and logarithmic Functions
- Identify graphs of exponential and logarithmic functions
- Sketches graphs of Exponential and Logarithmic functions
- Identify the relationship between exponential and logarithmic functions
- Identify and state rules of exponential and logarithmic functions
- Find domain and range of exponential and logarithmic functions
- Simplify exponential and logarithmic functions using their rules

Motivation

1) Interest: Compound

Compounded Continuously

Formulas:

 $A = P\left(1 + \frac{r}{n}\right)^{nt}$ (Compound Interest) $A = Pe^{rt}$ (Continuous Compounding) A = Amount P = Principalr = Rate of interest (in %)

t = Time (usually in years)

n = Number of times amount is compounded

2) Radioactive Decay & Population Growth

Radioactive Decay: If m_0 is the initial mass of a radio active substance with half life **h**, then the mass m(t) remaining at time **t** is modeled by the function

 $m(t) = m_0 e^{-rt}$, where $r = \frac{\ln 2}{h}$

Population Growth: A population that experiences a population growth increases according to the model: $n(t) = n_0 e^{rt}$, where n(t) = Population at time t, n_0 = Initial size of population, r = relative rate of growth (expressed as a proportion of the population), t = time.

Example: **C-14 Dating**. The burial cloth of an Egyptian mummy is examined to contain 59% of the C-14 it contained originally. How long ago was the mummy buried? (The half-life of C-14 is 5730 years)

Example: YouTube video

- Exponential growth and decay word problem: <u>https://www.youtube.com/watch?v=m5Tf6vgoJtQ</u>
- Exponential decay: <u>https://www.youtube.com/watch?v=HTDop6eEsaA</u>

Half-life example: <u>https://www.youtube.com/watch?v=Hqzakjo_dYg</u>
 Compound Interest

Compound Interest is calculated by the formula:

$$A(t) = P\left(1 + \frac{r}{n}\right)^{n\,t}$$

Example: YouTube video

Compound interest: <u>https://www.youtube.com/watch?v=Rm6UdfRs3gw</u>

Example 4: If \$4000 is borrowed at a rate of 5.75% interest per year, compounded quarterly, find the amount due at the end of the given number of years. a) 4 years b) 6 years c) 8 years

For r = 1, the compound interest formula becomes $A(t) = P(1 + \frac{1}{n})^{nt}$.

The Number e

Consider the expression $\left(1 + \frac{1}{n}\right)^n$. We would like to investigate the value that this expression gets

close to if *n* keeps getting larger. That is as $n \to \infty$, $\left(1 + \frac{1}{n}\right)^n \to ?$

n	$\left(1+\frac{1}{n}\right)^n$
1	2
10	2.593742
100	2.7048138
10000	2.71814592
100000	2.718268273
1000000	2.7182804693
1000000	2.718281692544
108	2.7182818148676
109	2.71828182709990
• • •	
∞	2.71828182845904

From the **above table** we can make the following observation:

As **n** increases without bound $\left(1 + \frac{1}{n}\right)^n$ approaches the number **e**, or equivalently When $n \to \infty$ the value $\left(1 + \frac{1}{n}\right)^n \to e$

6.1 Exponential Functions

Exponential Functions of base *a*

Definition: An exponential function with base *a* is the function defined by $f(x) = a^x$, where

a > 0 and $a \neq 1$.

Example 1: a) $f(x) = 2^{x}$ b) $g(x) = \left(\frac{1}{2}\right)^{x} = 2^{-x}$ c) $f(x) = e^{x}$

Graphs of $f(x) = a^x$: there are two cases i) a > 1 and ii) 0 < a < 1

Properties of the exponential function $f(x) = a^x$:

1) The domain of $f(x) = a^x$ is the set of all real numbers = $(-\infty, \infty)$

- 2) The function $f(x) = a^x$ is increasing for a > 1 and decreasing for 0 < a < 1
- 3) The range of $f(x) = a^x$ is $\{ y | y > 0 \} = (0, \infty)$
- 4) The function $f(x) = a^x$ has y intercept (0, 1) but has no x intercept
- 5) The function $f(x) = a^x$ is a one to one function, hence it has inverse which is a function.

Examples: YouTube videos

- Exponential growth and ...: <u>https://www.youtube.com/watch?v=6WMZ7J0wwMI</u>
- Exponential decay and ...: <u>https://www.youtube.com/watch?v=AXAMVxaxjDg</u>

Example 2: Sketch the graph of the following exponential functions:

a.	$f(x)=2^x$	d) $f(x) = \left(\frac{1}{2}\right)^x$
a.	$f(x) = 0.8^x$	e) $f(x) = 3^x$
b.	$f(x) = \sqrt[3]{3}^{x}$	f) $f(x) = 0.6^x$

Transformations:

Translations, Reflections, and Vertical and Horizontal Stretches and Shrinks

Translations:

1) Vertical Translation: $y = f(x) \pm c$, for c > 0

The graph of y = f(x) + c is the graph of y = f(x) shifted vertically c units up The graph of y = f(x) + c is the graph of y = f(x) shifted vertically c units down

2) Horizontal Translations: $y = f(x \pm c)$, for c > 0

The graph of y = f(x - c) is the graph of y = f(x) shifted horizontally **c** units to the right The graph of y = f(x - c) is the graph of y = f(x) shifted horizontally **c** units to the left.

Reflections

1) Across the x-axis:

The graph of y = -f(x) is the **reflection** of the graph of y = f(x) across the x-axis.

2) Across the y-axis:

The graph of y = f(-x) is the **reflection** of the graph of y = f(x) across the **y-axis**.

Stretches and Shrinks

Vertical Stretching and shrinking

To graph y = cf(x):

If c > 1, stretch the graph of y = f(x) vertically by a factor of c

If 0 < c < 1, shrink the graph of y = f(x) vertically by a factor of c

Horizontal Stretching and shrinking

To graph y = f(cx): If c > 1, shrink the graph of y = f(x) horizontally by a factor of 1/cIf 0 < c < 1, stretch the graph of y = f(x) horizontally by a factor of 1/c

Example 3: Sketch the graph (Transformations of Exponential Functions) a. $f(x) = -2^x$

- b. $f(x) = 2^x + 2$
- c. $f(x) = 2^{x-1}$
- d. $f(x) = -2^{x+1} 2$

OER West Texas A&M University Tutorial 42: <u>Exponential Functions</u>

The Natural Exponential Function

Definition: The Natural Exponential Function is defined by $f(x) = e^x$, with base e.

Continuously Compounded Interest

Continuously Compounded Interest is calculated by the formula: $A(t) = Pe^{rt}$

Where A(t) = Amount after t years, P = Principal, r = Interest rate per year, and t = Number of years Example 1: A sum of \$5000 is invested at an interest rate of 9% per year compounded continuously

- a) Find the value of A(t) of the investment after t years
- b) Draw a graph of **A**(**t**)

Laws of Exponents

Laws	Examples
$x^1 = x$	$6^1 = 6$
$x^{0} = 1$	$7^0 = 1$
$x^{-1} = 1/x$	$4^{-1} = 1/4$
$x^m x^n = x^{m+n}$	$x^2 x^3 = x^{2+3} = x^5$
$x^m/x^n = x^{m-n}$	$x^6/x^2 = x^{6-2} = x^4$
$(x^m)^n = x^{mn}$	$(x^2)^3 = x^{2 \times 3} = x^6$
$(xy)^n = x^n y^n$	$(xy)^3 = x^3y^3$
$(x/y)^n = x^n/y^n$	$(x/y)^2 = x^2 / y^2$
$x^{-n} = 1/x^n$	$x^{-3} = 1/x^3$

And the Laws about Fractional Exponents:

$$\frac{\text{Laws}}{x^{1/n}} = \sqrt[n]{x} \qquad \qquad \frac{\text{Examples}}{x^{1/3}} = \sqrt[3]{x}$$

$$x^{\frac{m}{n}} = \sqrt[n]{x^{m}} = \left(\sqrt[n]{x}\right)^{m} \qquad \qquad x^{\frac{2}{3}} = \sqrt[3]{x^{2}} = \left(\sqrt[3]{x}\right)^{2}$$
If the law: $x^{\frac{m}{n}} = \sqrt[n]{x^{m}} = \left(\sqrt[n]{x}\right)^{m}$ follows from the fact that $\frac{m}{n} = m \times (1/n) = 1$

Proof of the law: $x^{\frac{m}{n}} = \sqrt[n]{x^m} = \left(\sqrt[n]{x}\right)^m$ follows from the fact that $\frac{m}{n} = m \times (1/n) =$

 $(1/n) \times m$

OER West Texas A&M University Tutorial 2: <u>Integer Exponents</u> Tutorial 5: <u>Rational Exponents</u> Example: YouTube video:

Rational exponent: <u>https://www.youtube.com/watch?v=aYE26a5E1iU</u>

6.2 Logarithmic Functions and Their Graphs (page 423)

Consider the exponential function $y = a^x$, a > 0 and $a \neq 1$

- $y = a^x$ is a one-to-one function, thus it has an inverse which is a function
- The inverse of $y = a^x$ is a function called the logarithmic function

Recall, the inverse of a function is obtained by interchanging the x and the y in the equation defining the function. Thus, the inverse of $y = a^x$ is given by $x = a^y$ which is the same as $y = log_a x$. That is we are saying $x = a^y \Leftrightarrow y = log_a x$

Graphically: The graph of $y = log_a x$ obtained by reflecting the graph of $y = a^x$ across the line y = x. For example, consider $y = 2^x$

Example: YouTube video

Intro to logarithm: <u>https://www.youtube.com/watch?v=mQTWzLpCcW0</u>

Logarithmic Function with Base a

Definition: (log function to any base *a*)

 $y = log_a x$ is the number y such that $x = a^y$, where x > 0, a > 0 and $a \neq 1$ Examples

- a) Case, a > 1: $y = log_2 x$, $y = log_3 x$, $y = log_{1,3} x$; y = log x; y = ln x
- b) Case, 0 < a < 1: $y = log_{1/2}x$, $y = log_{1/3}x$, $y = log_{0.4}x$; $y = log_{1/7}x$

Graphs

Graphs of $y = log_a x$: Two cases i) a > 1 and ii) 0 < a < 1

Properties of the logarithm function $f(x) = log_a x$

- 1) The domain of $f(x) = log_a x$ is $\{x | x > 0\} = (0, \infty)$
- 2) The function $f(x) = \log_a x$ is increasing for a > 1 and decreasing for 0 < a < 1
- 3) The range of $f(x) = log_a x$ is the set of all real numbers, in interval form $(-\infty, \infty)$
- 4) The function $f(x) = log_a x$ has x intercept (1, 0) has no y intercept
- 5) The function $f(x) = log_a x$ is a one to one function, hence it is invertible.
- 6) The function $f(x) = \log_a x$ is the inverse of the exponential function $y = a^x$ and vice versa

Example 1: Graph the following logarithmic functions

- a) $y = log_3 x, y = log_{1,3} x; y = log x; y = ln x$
- b) $y = log_{1/3}x, y = log_{0.4}x; y = log_{1/7}x$

OER West Texas A&M University Tutorial 43: Logarithmic Functions

Example 2: Find the domain and graph the following logarithmic functions

a)
$$y = -log_3 x$$
 c) $y = -log_{0.2}(x+1) + 2$

b)
$$y = log_2(x-2)$$

Example 2: Example 6.1.4. Page 425: Find the domain of the following functions

a) $f(x) = 2\log(3 - x) - 1$ b) $g(x) = \ln\left(\frac{1}{x - 1}\right)$

Homework page 429: #1 – 74 (odd numbers)

Natural and Common Logarithms

Definition: 1) Logarithms with **base** *e* are called **natural logarithms**,

Notation: *ln x* used instead of *log_ex*

2) Logarithms with **base 10** are called **common logarithms**

Notation: log x used instead of $log_{10}x$

The calculator *log* is base 10, and the calculator *ln* is base *e*.

Example 3: Find using a calculator:

a) log 13	c) In 9	e) ln <i>e</i>
b) log 10	d) <i>log</i> 5	f) <i>ln</i> 5

Conversion between Exponential and Logarithmic Equations Exponent Form Logarithmic Form

Applient For	111	Lugarithinit
$b^y = x$	\Leftrightarrow	$y = log_b x$
$e^y = x$	\Leftrightarrow	y = ln x
$10^{y} = x$	\Leftrightarrow	y = log x

Example 4: Example 6.1.3 Page 424: Reading

Examples 5: Convert to the exponential form

a) $\log 1000 = 3$	c) $\log 5 = b$	$e) \ln e = 1$
b) $\log_3 81 = 4$	d) $\ln \sqrt[3]{e} = 1/3$	f) $\ln 9 = t$

Example 6: Convert each of the following to a logarithmic or exponential equation:

a) $16 = 2^x$	d) $7^2 = 49$	e) $10^{-3} = 0.001$
b) $\log_2 32 = 5$	f) $x = \log_t M$	h) $27^{1/3} = 3$
c) $\log_3 9 = 2$	g) $\ln 4 = y$	

Properties of Logarithms (page 437)

OER West Texas A&M University Tutorial 44: Logarithmic Properties

Example: YouTube video

- Logarithm Properties 1: <u>https://www.youtube.com/watch?v=PupNgv49 WY</u>
- Logarithm Properties 2: <u>https://www.youtube.com/watch?v=TMmxKZaCqe0</u>
- Logarithm of power: <u>https://www.youtube.com/watch?v=Pb9V374iOas</u>

1) $log_b(xy) = log_b x + log_b y$	(Product Rule)
2) $log_b(x/y) = log_b x - log_b y$	(Quotient Rule)
3) $log_b x^P = P \times log_b x = P log_b x$	(Power Rule)

4) $\log_b x = \frac{\log_c x}{\log_c b}$, for c > 0 and $c \neq 1$

(Change of Base)

If we change the base **b** to c = 10 or c = e, then the change of base formula becomes:

$$log_b x = \frac{\log x}{\log b}$$
 OR $log_b x = \frac{\ln x}{\ln b}$

Example: YouTube video

- Change base formula: <u>https://www.youtube.com/watch?v=OkFdDqW9xxM</u>
- Sum of logarithm: <u>https://www.youtube.com/watch?v=pkGrXzakRFs</u>
- 5) Other properties: Let b > 0 and $b \neq 1$, then:
 - a) $log_b 1 = 0$, and so ln 1 = 0
 - b) $log_b b = 1$, and so ln e = 1
 - c) $log_b b^x = x$, and so $\ln e^x = x$
 - d) $b^{\log_b x} = x$, and so $e^{\ln x} = x$

Example 1: Example 6.2.1 page 438: Reading

Example 1: Find each of the following using properties of log.

a) $\log 10000$ b) $\log_2\left(\frac{1}{8}\right)$ c) $\log_5 5^3$ d) $\log_7 49$ e) $\log 100$ f) $\log_3 3$

Example 2: Find the value each of the following using log properties

a) $\log_{10} 5$ c) $\log \sqrt[3]{42}$

b) log_{1/3}81

Example 3: Simplify the following

a) $(2^{\sqrt{5}})^{\sqrt{20}}$ b) $\log_2(\log_9 81)$ c) $\log_2(128/16)$ d) $e^{\ln \sqrt[3]{81}}$

Example 4: Evaluate without a calculator whenever possible, otherwise use a calculator

a) $\log \sqrt[3]{100}$ c) $\log_2 25$ b) $\log_3 \sqrt[4]{27}$ d) $\ln(\sqrt[7]{e^2})$

Example 5: Evaluate:

a) log₂ 5 b) log_{0.32} 99

Example 6: Write as a single log:

- a) $log_2(x-2) + 3log_2x log_2(3+x)$ c) $2 log_4 x + log_4 y \frac{1}{3}z$
- b) $\log_b x + 2\log_b y 3\log_b x$

Example 7: Expand using log properties:

a)
$$\log(3\sqrt{x})$$

b) $\log_5\left(\frac{\sqrt{x+1}}{9x^2(x-3)}\right)$
c) $\log\left(\frac{x^{1/2}}{y^2\sqrt[3]{x^2}}\right)$
d) $\log_b(x^2y^3z^2)$

Homework page 445: #1 – 42 (odd numbers)

Solving Exponential Equations and Logarithmic Equations:

OER West Texas A&M University:	Tutorial 45: <u>Exponential Equations;</u>

Tutorial 46: Logarithmic Equations

Example: YouTube video:

- Solving logarithm equations: <u>https://www.youtube.com/watch?v=Kv2iHde7Xgw</u>
- Solving exponential and log equations: <u>https://www.youtube.com/watch?v=7Ig6kVZaWoU</u>

Form	Strategy
1. $b^x = b^y$	Bases are the same, drop bases to obtain $x = y$
2. $\boldsymbol{b}^{\boldsymbol{x}} = \boldsymbol{y}$	Take <i>log</i> or <i>ln</i> of both sides to change to the <i>log</i> form
3. $log_b x = log_b y$	Bases are the same , drop the <i>logs</i> to obtain $x = y$
4. $log_b x = y$	Convert to exponential form to solve $b^y = x$
Example1 : Solve each of the fo	ollowing

a) $4^{3x} = 32^{x-2}$	g) $4^{x+3} = 3^{-x}$
b) $e^{x+3} = e^{x^2-4x}$	h) $7e^{x+3} = 5$
c) $2^{5x} = 64$	i) $3^x - 3^{-x} = 4$
d) $9^{x^2} \times 3^{5x} = 27$	j) $2e^{4x} + 5e^{2x} + 3 = 0$
e) $3^{x^2-5x} = \frac{1}{81}$	f) $3^x = 7$

Example 2: State the domain and solve the following

- a) $\log_2 x = 6$ b) $\log_3 x + \log_3(2x - 3) = 3$ c) $\log_3 x + \log_3(x + 1) = \log_3 2$ e) $\log_4 x + \log_4(x + 1) = \log_4 2$ f) $\log(x + 2) - 3\log 2 = 1$ g) $\log_b 81 = -2$
- d) $log_2(x+1) + log_2(3x-5) = log_2(5x-3) + 2$

Homework page 456: #1 – 33 (odd numbers) Homework page 466: #1 – 24 (odd numbers)